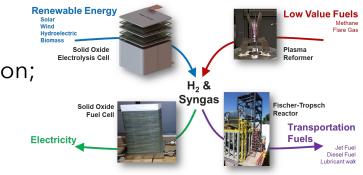
Energy & Geosciences Institute 2023 EGI Annual Technical Conference September 20, 2023 | Salt Lake City Marriott University Park

Joseph Hartvigsen CEO & Co-Founder OxEon Energy

Utah, USA R&D/Manufacturing - 2017

- Office, laboratory, and manufacturing facility (24,000 ft²)
- NASA, DOE, DOD and commercial contracts
- Tape casting, cell and stack production, and testing
- End-to-end power to synfuels pilot plant
- 1 of 4 US manufacturers of Solid Oxide Stack Technologies



Solid Oxide Fuel Cell and Electrolysis Stacks

- Longest running solid oxide fuel cell & electrolysis group in world
- Only flight qualified, TRL 9 SOEC unit with active NASA demonstration on Mars
- 30kW/10kW and 20kW/10kW reversible SOC system test programs
- Active members of the Mars2020 Science Team for NASA

Fuel Reformation and Generation

- Plasma Reformer $\rm H_2$ or syngas from flare gas; digester gas conversion; clean-up bio-gasification
- Fischer-Tropsch Reactors Modular design for sustainable fuel production from H₂ and syngas
 - 2 bbl/day modular FT system delivered by team

Solid Oxide Technology for Space Exploration

NASA funded flight program

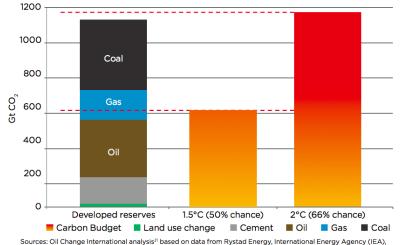
- Only flight qualified SOEC stack in history
- Only TRL9 SOEC device in history
- First production of oxygen from the Mars Atmosphere

MOXIE SOXE TEAM:

- MIT: Program Prime and Science Team Lead
- JPL: Systems integration
- **OxEon:** Stack development and production
 - TRL3 to 6 in 18 months!!
 - Hermetically sealed, ruggedized stack capable of withstanding launch, entry, descent and landing

Active OxEon Projects with NASA for Next Generation

- Mars: Oxygen and Methane Production from co-electrolysis
- Lunar: Liquid Propellants for LH₂/LOx-Fueled Cislunar Transport
- SBIR: Cathode Development for Redox Tolerance


https://oxeonenergy.com/

• Scroll down to find 3 minute video

Why Decarbonize?

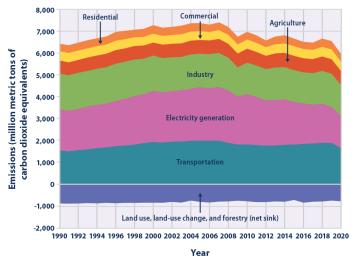


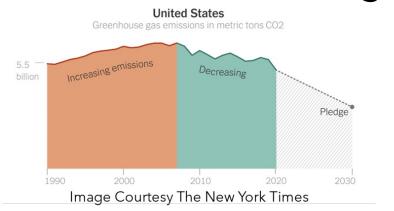
Figure ES-1: CO₂ Emissions from Developed Fossil Fuel Reserves, Compared to Carbon Budgets (as of Jan. 2018) within Range of the Paris Goals

U.S. Greenhouse Gas Emissions and Sinks by Economic Sector, 1990–2020

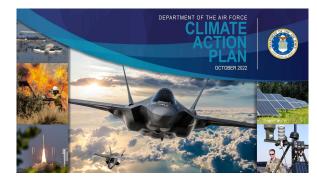
World Energy Council, and IPCC

Data source: U.S. EPA (U.S. Environmental Protection Agency). 2022. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2020. EPA 430-R-22-003. www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks.

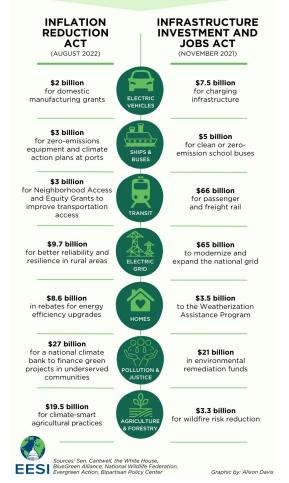
45 30 20 10 0 -10 -20 -30 -50 -90 60 -40 -20 0 20 40 60 80 5 -2 0 5 10 15 20 Mortality (change in deaths per 100k) Agricultural yields (% change) Energy expenditures (% change) 0.5 0 -0.25 -0.5 -1.0 -1.5 -2.0 -3.0 0.5 0 -0.25 -0.5 -1.0 -1.5 -2.0 -3.0 0 0.01 0.1 1 10 20 >20 Low-risk labor (% change) Coastal damage (% county GDP) High-risk labor (% change) -0.5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 -13 -10 -5 0 5 10 15 20 25 28 Property crime (% change) Violent crime (% change) Total direct damages (% county GDP)

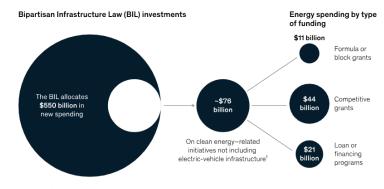

Maps showing how climate change will adversely affect the United States in areas of agriculture, crime, life span, property damage, and labor. Source: Hsiang, et. al, 2017.


For more information, visit U.S. EPA's "Climate Change Indicators in the United States" at www.epa.gov/climate-indicators.


Why Act Now?

Mandate Driven Change





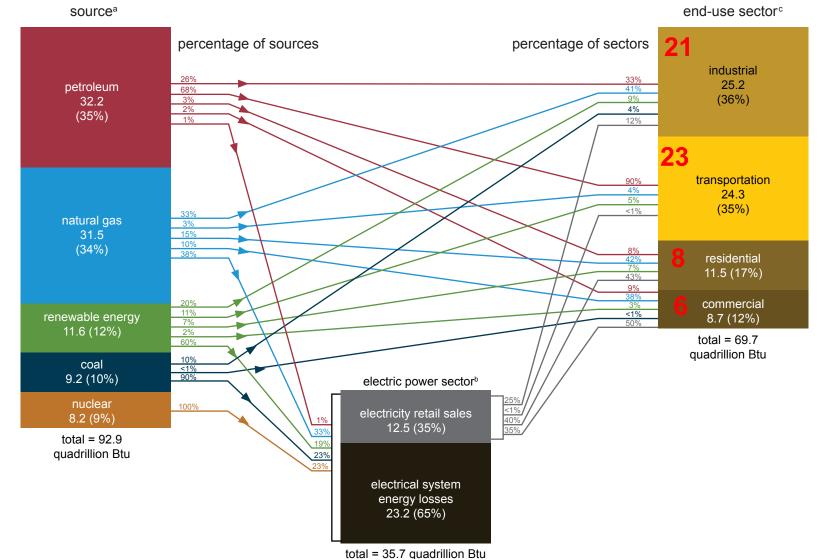
Federal Legislation Backed Development

Complementary Climate Investments in Recent Legislation

The Bipartisan Infrastructure Law targets a sizable portion of spending to the energy sector.

¹An estimate of BIL clean-energy funding, which includes a combination of clean-energy, resilience, and environmental-remediation funding related to the utility and power sector. This does not include electric verticel-netlated funding. Source: Building a better America: A guidebook to the Bipartiesan Infrastructure Law for state, local, Iribal, and territorial governments, and other partners, The White House, May 2002.

McKinsey & Company

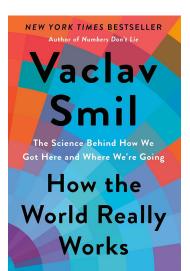


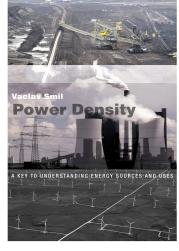
Sources: White House IIJA guidebook, May 2022 edition; Infrastructure Investment and Jobs Act, which was signed into law on November 15, 2022; Inflation Reduction Act, which was signed into law on August 16, 2022.

How Big Is The Problem?

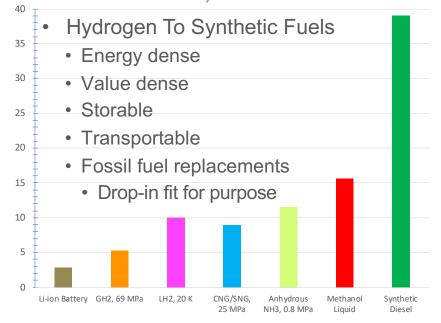
U.S. energy consumption by source and sector, 2020

quadrillion British thermal units (Btu)


58 Fossil Quads


- Fossil Quads By End-Use Sector
 - 21 Industrial
 - 23 Transportation
 - 8 Residential
 - 6 Commercial
- Electric contribution
 - 21 Electric in
 - 6 Electric out
- Electrofuels & Chemicals
 - (Too) Energy Intensive?
 - Displacing 52 Fossil Quads is intense!
 - 3.8x 458 GW annual average grid load
 - 1,740 GW electrolysis at η=100%
 - Mega-Tons/d of Hydrogen, 0.45GT/y
- How will we store, distribute, and use it?
 - Fossil fuel replacements

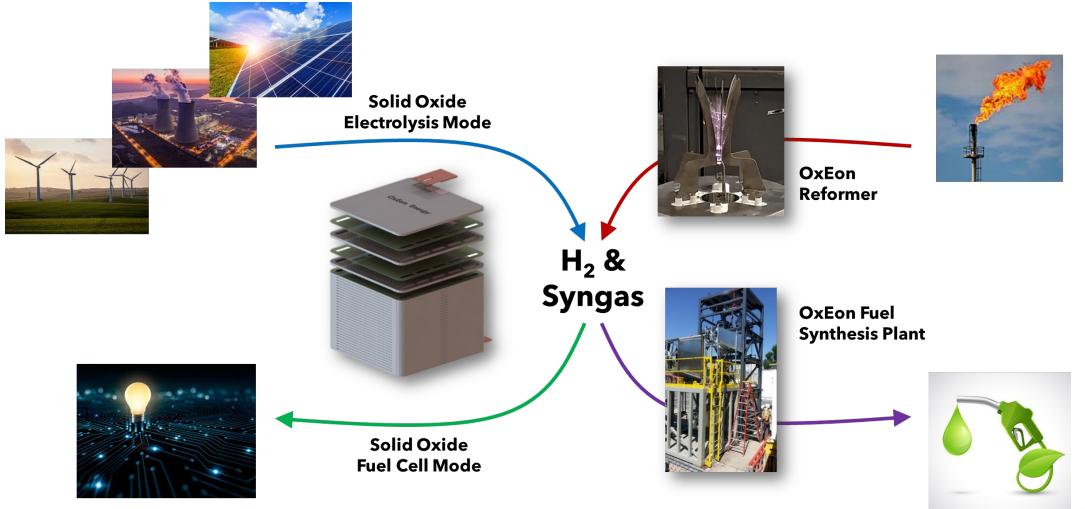
- How The World Really Works Vaclav Smil
- The four pillars of modern civilization
 - 4.5 billion tons of cement
 - 1.8 billion tons of steel
 - 400 million tons of plastics
 - 180 million tons of ammonia feeds half of the worlds 8 B people
- Energy is also material
 - 8 billion tons of coal
 - 4.3 billion tons of oil
 - 3.1 billion tons of natural gas



- Power Density!
- Comparative Energy Density
 - JP-8 33-36 MJ/liter (43 MJ/kg, 0.76 to 0.84 kg/liter)
 - Diesel 36 MJ/liter (46 MJ/kg, 0.86 kg/liter)
 - Hydrogen 4.4 MJ/liter (work of compression is 10-12% of LHV)
 - at 690 bar (10,000 psi) Z=1.43
- Storable, pumpable, for on-demand energy
- Established markets for liquid fuels
 - Highly developed infrastructure
 - Vehicle fleet will take decades to retire
 - US demand, 7.3 billion bbl/yr, > \$400 billion/yr

9

2 min "Recharge" at 0.5 kg/s & 46 MJ/kg = 23 MW recharge rate



The Solution: Enabling Cross-Sector Energy Conversion

DISPATCHABLE POWER SOLUTIONS | HYDROGEN PRODUCTION FOR INDUSTRIAL MANUFACTURING FUEL LOGISTICS SOLUTIONS | SUSTAINABLE AVIATION FUEL PRODUCTION

OxEon Technology Background

Enabling Cross-Sector Energy Conversion

PTX | SUSTAINABLE AVIATION FUEL | ISRU PROPELLANTS | BIOGAS PROCESSING

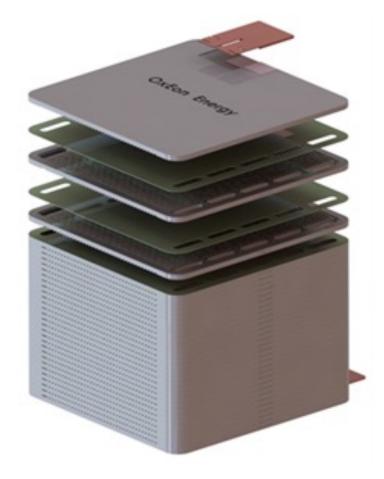
PLASMA REFORMER

Low power requirement, soot free, sulfur insensitive Compact conversion of any hydrocarbon to syngas

FISCHER-TROPSCH REACTOR

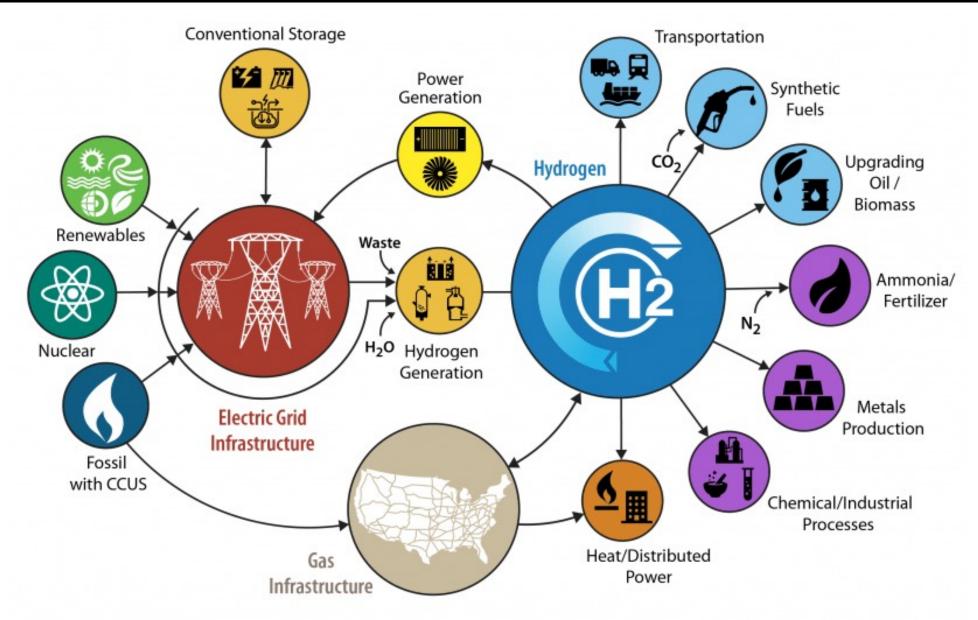
Produces "green" transportation fuels from syngas Modular design for remote and small-scale application

SOLID OXIDE ELECTROLYSIS CELLS



Stable, reliable electrolysis stack produces hydrogen/syngas from steam/CO₂ electrolysis

SOLID OXIDE FUEL CELLS



One of the most environmentally friendly methods for electricity and heat production

DOE H2@Scale Vision

A Wave of Change Is Comming

- Waves come in sets
 - This one is so big we catch it or are crushed by it
 - Planning to catch the 2nd wave is risky
- IEA 2027 Projection
 - Main case 50 GW
 - Accelerated case 90 GW
 - <u>https://www.iea.org/reports/how-much-will-renewable-hydrogen-production-drive-demand-for-new-renewable-energy-capacity-by-2027</u>
- Brazilian surfer Rodrigo Koxa riding a 24.38 meter wave 08 Nov 2017 on Praia do Norte beach in the Portuguese fishing village of Nazaré.

Thank you

Joseph Hartvigsen JJH@OxEonEnergy.com

Eeyond Current Potential

OxEon Energy, LLC 257 Riverbend Way North Salt Lake, UT 84054

info@oxeonenergy.com +1-801-677-300 oxeonenergy.com

