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Geo-energy activities can and do induce earthquakes

Fault slip
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A magnitude 2.3 induced event caused an uproar in the UK that caused a moratorium on hydraulic fracturing
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The primary mechanism of induced seismicity is through the reduction of the effective normal stress
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Other mechanisms exist, however
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The Coulomb failure function (CFF) as means of describing earthquake potential is well understood
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In this talk, we will explore probabilistic approaches to uncertainties
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In this talk, we will explore the impact of curvature along a fault
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The San Juan Basin CarbonSAFE project is concerned with induced seismicity
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Commercial feasibility test of geologic
carbon sequestration

San Juan Basin is in northwestern
New Mexico

Intends to store 6-7 million tons per
year over 12-20 years

Currently applying for a Class VI UIC
permit
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The past seismicity indicates low hazard
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Depth (ft)

The stresses are obtained with Eaton’s method and certain faulting scenarios are identified
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One scenario is potentially problematic
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The saltwater disposal and geologic framework indicate that the hazard is low
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Certain parameters are inherently more sensitive
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Summary of probabilistic hazard prediction

Inputs of stresses and orientation are required to run the Mohr-Coulomb analysis

Injection appears to be safe in most of the region of interest, but the flexural faults may be
problematic

By looking at the saltwater disposal and geologic framework, the hazard is lessened
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In previous studies, a single plane is fit to a fault

O
N}

¥ 7
7 ,%ré\
/'//.;nsono AN

. ﬂb f Ellis ftl
.' |
/ / tadit- slip potential -

T m
! ,/ 0010203040506

Hennings et al. (2019)

w\{ toirg oy | Srnax=NOBS5°E +8°
- | \\

. \\

Dvory and Zoback (2021)

Walsh and Zoback (2016)

22



But we know that faults can have roughness, rugosity, and curvature

roughness

Abe and Deckert (2021)
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But we know that faults can have roughness, rugosity, and curvature

undulating smooth

Sagy and Lyakhovsky (2019)

24



and curvature

But we know that faults can have roughness, rugosity,

Dixon et al. (2019)
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We will revisit the Hogback flexural faults and model them as listric
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There are many ways to discretize the surface

000 -

1500

Depth [ft]

X [ft]

McCormack and Smith, under review

27



Bayes’ law can help, but only up to a certain point
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The beauty of this approach is that spatial variances are captured within a single fault
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Summary of fault curvature

 When information about the curvature of a fault is known, kriging the surface can produce an

understanding of hazard in a spatial sense within the fault

» Itis not only the orientation of the fault that impacts these results - the stresses also change in

space, especially with depth

* This is not applicable for all situations
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Shear stress .

Summary of CSI Induced Seismicity

Fault curvature
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Thank you



