Unlock Data to Optimize Industrial Processes

John Hedengren
Brigham Young University
EGI Technical Conference
Outline

• Trends in Data and Computing
• Data-Driven Engineering Tutorials
• Research Overview
• Conclusions
Current Trends in Data

Actual and forecast amount of data created worldwide 2010-2035 (in zettabytes)

25 GB/hour
150,000 points/sec
51,200 GB/hr

Source: Simafere, Fortune, RTInsights, Cisco
Current Trends in Data

- 25 GB/hour
- 150,000 points/sec
- 51,200 GB/hr

Source: Simafore, Fortune, RTInsights, Cisco
Current Trends in Computing

• +22% projected growth in programming jobs over next decade
 • Development, QA, Analysis, Testing

Source: Data is Beautiful Most Popular Programming Languages 1965 - 2022
Data-Driven Engineering

- Engineering Programming
- Optimization
- Machine Learning
- Dynamic Optimization
- Process Control
AI to Enhance HI (Human Intelligence)

Student-Teacher Ratio 1:30 to 1:1

Summative Achievement Scores

Salman Khan, TED Talk 2023
Brainstorm incentives for a customer loyalty program in a small book...

Plan a trip to explore the Madagascar wildlife on a budget

Make a content strategy for a newsletter featuring free local weekend e...

Come up with concepts for a retro-style arcade game
Generative AI for Prediction and Optimization

Learn

- Creating: Use info to create something new - design, build, plan, construct, produce, devise, invent
- Evaluating: Critically examine info & make judgements - judge, critique, test, defend, criticize
- Analyzing: Take info apart & explore relationships - categorize, examine, organize, compare/contrast
- Applying: Use info in a new (but similar) form - use, diagram, make a chart, draw, apply, solve, calculate
- Understanding: Understanding & making sense out of info - interpret, summarize, explain, infer, paraphrase, discuss
- Remembering: Find or remember info - list, find, name, identify, locate, describe, memorize, define

Apply

- Optimisation: What's the best that can happen?
- Predictive Modelling: What will happen next?
- Forecasting: What if these trends continue?
- Statistical Analysis: Why is this happening?
- Alerts: What actions are needed?
- Query Drilldown (OLAP): Where exactly is the problem?
- Ad-Hoc Reports: How many, how often, where?
- Standard Reports: What happened?

Business Analytics

Value

Business Intelligence

Synthesis
Data-Driven Engineering

Install Python
1 Basics
2 Tuple
3 List
4 Set
5 Dict
6 Numpy
7 Pandas
Python Introduction
NumPy

Python NumPy

- INSTALL + IMPORT
- 1D, 2D, 3D ARRAYS
- EXPORT + IMPORT
- UNARY OPERATIONS
- BINARY OPERATIONS

https://apmonitor.com/dde
ChatGPT

Examples

- "Explain quantum computing in simple terms" →
- "Got any creative ideas for a 10 year old's birthday?" →
- "How do I make an HTTP request in Javascript?" →

Capabilities

- Remembers what user said earlier in the conversation
- Allows user to provide follow-up corrections
- Trained to decline inappropriate requests

Limitations

- May occasionally generate incorrect information
- May occasionally produce harmful instructions or biased content
- Limited knowledge of world and events after 2021

ChatGPT Feb 13 Version. Free Research Preview. Our goal is to make AI systems more natural and safe to interact with. Your feedback will help us improve.
Prompt Learning

• Help me find the error in my code without showing the answer.
• Explain each line of this Python code to a Matlab user.
• Generate a similar example.
• How can I make this more Pythonic?
• Test my knowledge of _Numpy.linspace_ with a quiz.
• Summarize what we’ve discussed so far.
• Translate this Python code to Matlab.
• I’m interested in ______. Why is this important to know?
• Generate a lesson plan on _Numpy_.

Data Import

1. Text
2. Audio
3. Video
4. Database
5. Sensors
6. Cloud
7. Web Scraping
Data Import and Access
Text Data Analysis

https://apmonitor.com/dde
Data-Driven Engineering

Engineering Programming

Machine Learning

Process Control

Optimization

Dynamic Optimization
Machine Learning for Engineers

https://apmonitor.com/pds
Machine Learning Roadmap
Data-Driven Modeling Languages

- scikit-learn
- tensorflow
- pytorch

Monthly Downloads

Year:
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022

Example code snippet:
```python
# Define a list of classifiers
ns = [nb, LogisticRegression(), SGDClassifier(), KNeighborsClassifier(), DecisionTreeClassifier(), RandomForestClassifier(), SVC(), MLPClassifier(max_iter=2000), GradientBoostingClassifier(), XGBClassifier()]

c = 0
for clf in ns:
    print('Model:', clf)
    print('Accuracy:', clf.score(X, y))
```
Tubular Column

P

t, d

1

SCAN ME
ChatGPT

Examples

"Explain quantum computing in simple terms" →

"Got any creative ideas for a 10 year old's birthday?" →

"How do I make an HTTP request in Javascript?" →

Capabilities

Remembers what user said earlier in the conversation

Allows user to provide follow-up corrections

Trained to decline inappropriate requests

Limitations

May occasionally generate incorrect information

May occasionally produce harmful instructions or biased content

Limited knowledge of world and events after 2021
Column Design

Contours = Cost (objective)
Constraint line markers point towards feasible space.
Temperature Control Lab

apmonitor.com/heat.htm
Benchmark: Temperature Control Hardware
Data Availability

25 GB/hour

150,000 points/sec

51,200 GB/hr

Source: Simafore, Fortune, RTInsights, Cisco

Application: Flight Optimization

http://prismweb.groups.et.byu.net/360/

https://github.com/BYU-PRISM/hale-trajectory
Application: Biomechanics
MileSplit50: Jane Hedengren Moves To The No. 1 Spot

1. Jane Hedengren, Provo, UT
2. Elizabeth Leachman, Boerne, TX
3. Ellie Shea, MA
4. Sadie Engelhardt, Ventura, CA
5. Isabel Allori, Fort Collins, CO

LIVE EVENT COVERAGE
- 2023 Dave Sanders Invitational, 2023-09-22
- 2023 Live in Lou XC Classic, 2023-09-29
- 2023 FSU Pre-State Invitational, 2023-09-29
- 2023 McQuaid Invitational, 2023-09-30
Application: Drilling Automation
Physics-Informed, Data-Driven Modeling

Model Types

Linear
- FOPDT
- State Space
- Transfer Function
- ARX
- ARMAX
- Output Error
- FIR
- Box Jenkins
- Linearized Physics-Based

Nonlinear
- H-W
- Volterra
- NARX
- FF
- LSTM
- PINN
- Hybrid Models
- Physics-Based

Physics-Based

Linearized Physics-Based

Transformer
SysID Add-on Overview

Application
- Browser-based application
- Google-like search
- Tools for common functions
- Save and collaborate

Time Series Analytics
- Diagnostics analytics
- Monitoring and alerts
- Predictive analytics

Advanced Analytics
- Data cleansing
- Pattern recognition
- Scalable calculations
- Machine learning

pip install seeq-sysid
System Identification (SysID) Add-on

Models
- Time Series
- Subspace
- Neural Network
- Transfer Function
1. Select Data
2. Select Model
3. Identify
4. Push Model
Neural Network Models for Sequence Data

1986: RNN
1997: LSTM
2014: Seq2Seq
2015: Attention + Seq2Seq
2017: Transformer “Attention is all you need”
2018: GPT-1
2019: BERT
2020: GPT-3

NLP
Time-Series
TFT
AlphaGo
Attention Mechanism
Transformer Architecture (Self-attention)

- Short processing time
- No vanishing gradient
- Captures irregular temporal dependency
Model Predictive Control (Two options)

Surrogate MPC
- Trained by Open-loop data
- Fast (No optimization step)
- No online correction - can’t guarantee the performance

Emulation MPC
- Trained by Closed-loop data
- Fast (No optimization step)
- No online correction - can’t guarantee the performance
Training Data Preparation

Receding Window Snapshots

Number of Variables

Window (w)

Prediction Horizon (P)

Number of Snapshots (T)

$k-w$ k $k+P$
Future of Data-Driven Control

- Short processing time
- No vanishing Gradient problem
- Capture irregular temporal dependency
Physics Informed Neural Network (PINN)

Training

\[\text{MSE}_y = \frac{1}{N_y} \sum_{i=1}^{N_y} \left| y_{\text{NN}}(t_i, u_i) - y_{\text{meas}} \right|^2 \]

Evaluating

\[\text{MSE}_f = \frac{1}{N_f} \sum_{i=1}^{N_f} \left| f(t_i, y_{\text{NN}}, y_{\text{NN}}, u_{\text{meas}}) \right|^2 \]

Combined Loss function
Physics Informed Neural Network (PINN)

PINN Off

PINN On