

Unlock Data to Optimize Industrial Processes

John Hedengren Brigham Young University EGI Technical Conference

Outline

- Trends in Data and Computing
- Data-Driven Engineering Tutorials
- Research Overview
- Conclusions

Current Trends in Data

Current Trends in Data

25 GB/hour 150,000 points/sec

51,200 GB/hr Source: Simafore, Fortune, RTInsights, Cisco

Current Trends in Computing

• +22% projected growth in programming jobs over next decade

•Development, QA, Analysis, Testing

Source: Data is Beautiful Most Popular Programming Languages 1965 - 2022

Al to Enhance HI (Human Intelligence)

Salman Khan, TED Talk 2023

Summative Achievement Scores

ChatGPT

Brainstorm incentives

for a customer loyalty program in a small book...

Make a content strategy

for a newsletter featuring free local weekend e...

Plan a trip

to explore the Madagascar wildlife on a budget

Come up with concepts for a retro-style arcade game

Send a message

Free Research Preview. ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT August 3 Version

Generative AI for Prediction and Optimization

Synthesis

Data-Driven

Engineering Install 2 5et 1 Basics 5 Dict **2 Tuple 6 Numpy** 3 List 7 Pandas

https://apmonitor.com/dde

Data-Driven Engineering

NumPv

6 Python NumPy INSTALL + IMPORT 12 ID, ZD, 3D ARRAYS EXPORT + IMPORT **UNARY OPERATIONS** BINARY OPERATIONS

SCAN ME

1	Basics
2	Tuple
3	List
4	Set
5	Dictionary
6	NumPy
7	Pandas

ChatGPT

I

1

Prompt Learning

- Help me find the error in my code without showing the answer.
- Explain each line of this Python code to a Matlab user.
- Generate a similar example.
- How can I make this more Pythonic?
- Test my knowledge of <u>Numpy linspace</u> with a quiz.
- Summarize what we've discussed so far.
- Translate this Python code to Matlab.
- I'm interested in _____. Why is this important to know?
- Generate a lesson plan on <u>Numpy</u>.

Data-Driven Engineering

Data Import 1 TEXT 📋 2 AUDIO 3 VIDEO 4 Database 🤿 5 SENSORS 6 CLOUD 🖰 7 WEB SCRAPING 🌐

Data Import and Access

Text Data Analysis https://apmonitor.com/dde

Data-Driven Engineering

Data-Driven Engineering

Object type	Access	Size	Address Space
Coil	Read-write	1 bit	00001 - 09999
Discrete input	Read-only	1 bit	10001 - 19999
Input register	Read-only	16 bits	30001 - 39999
Holding register	Read-write	16 bits	40001 - 49999

Data-Driven Engineering

Server &

Client

Data-Driven Engineering

Data-Driven Engineering

Machine Learning for Engineers

https://apmonitor.com/pds

Machine Learning Applications

https://www.javatpoint.com/applications-of-machine-learning

Machine Learning Roadmap

Data-Driven Modeling Languages

Navigate Machine Learning

Engineering Optimization

Introduction Modeling Unconstrained Discrete Genetic Alg Constrained Robust Dynamic

Optimization Methods for Engineering Design

Parkinson | Balling | Hedengren Brigham Young University Second Edition

Tubular Column

SCAN ME

Array Modification.

ChatGPT

NEW

node

It

es & FAQ

ChatGPT Feb 13 Version. Free Research Preview. Our goal is to make AI systems more natural and safe to interact with. Your feedback will help us improve.

1

of our problem. The constants include the density of steel (`rho`), the axial compressive

g out

ChatGPT Feb 13 Version. Free Research Preview. Our goal is to make AI systems more natural and safe to interact with. Your feedback will help us improve.

Modi

ation

us

Q

Process Dynamics and Control

https://apmonitor.com/pdc

Process Dynamics and Control

Temperature Control Lab

Actuator Heaters

S Sensors T (°C)

apmonitor.com/heat.htm

Benchmark: Temperature Control Hardware

Data Availability

51,200 GB/hr Source: Simafore, Fortune, RTInsights, Cisco

http://prismweb.groups.et.byu.net/360/

Application: Flight Optimization

Select Variable		
Altitude (m)		× 👻
© 2D	Hide Wind	Hide Sun
• 3D	Show Wind	Show Sun

Select Variable

23k

22k

(m) 21k altttude

20k

19k

Tota

ı	Energy	(kWh)

Battery	Ene

X Ŧ

Select Variable	
Battery Energy (kWh)	

X Ŧ

https://github.com/BYU-PRISM/hale-trajectory

Battery Energy (kWh)

Application: Biomechanics

MileSplit50: Jane Hedengren Moves To The No. 1 Spot				
			MileSp	11:50
	TIMPVIEW	JANE HEDENGREN		
			2023	RANK
			ÖN THE LINE	Amichaese Interneties DDD
Behind The Cost Of Track Recruiting, As	Twenty Years Ago, Track Recruiting	Jason Vigilante Tabbed As	On The Line: Woodbridge, Addison	MileSplit50: Jane Hedengren Moves To

MileSplit50

XC RANKINGS INDIVIDUAL - GIRLS ✓ SEE MORE → 1 Jane Hedengren Provo, UT 2 Elizabeth Leachman Boerne, TX 3 Ellie Shea , MA 4 Sadie Engelhardt Ventura, CA 5 Isabel Allori Fort Collins, CO f SHARE

LIVE EVENT COVERAGE

2023 Dave Sanders Invitational 2023-09-22

2023 Live in Lou XC Classic 2023-09-29

2023 FSU Pre-State Invitational 2023-09-29

2023 McQuaid Invitational 2023-09-30

Application: Drilling Automation

2

SPE-112109 Courtesy eDrilling

Physics-Informed, Data-Driven Modeling

Model Types

SysID Add-on Overview

 $h = \frac{100V}{n-1} \left(\frac{1}{G^{-1}} \cdot \frac{1}{G^{-1}} \right)$

 $\operatorname{Wall}_{\operatorname{fam}} * \left[\frac{R}{T_{h}} * \ln \left(\frac{k}{s_{\max}} \right) * \frac{1}{T_{n+m}} \right]^{-1}$

Application

- Browser-based application
- Google-like search
- Tools for common functions
- Save and collaborate

Time Series Analytics

- Diagnostics analytics
- Monitoring and alerts
- Predictive analytics

System Identification (SysID) Add-on

Neural Network Models for Sequence Data

Attention Mechanism

Transformer Architecture (Self-attention)

- Short processing time
- No vanishing gradient
- Captures irregular temporal dependency

Model Predictive Control (Two options)

Surrogate MPC

Trained by Open-loop data

Trained by Closed-loop data Fast (No optimization step) No online correction - can't guarantee the performance

Training Data Preparation

Receding Window Snapshots

Future of Data-Driven Control

Physics Informed Neural Network (PINN)

Physics Informed Neural Network (PINN)

