

ERSITY OF

Quantitative Risk Assessment in CCUS Projects: An Overview

Ting Xiao, Ph.D. Research Assistant Professor Energy & Geoscience Institute University of Utah 09/19/2023

Acknowledgement

CO₂ Capture, Utilization, and Storage

This Photo by Unknown Author is licensed under CC BY

This Photo by Unknown Author is licensed under CC BY

Risk Assessment for CCUS

- \circ Whether CO₂ can be successfully stored in subsurface.
- Whether CO₂ can be safely stored for long term.

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

- Risk Management Plan
- Risk Identification (Registry)
- Qualitative Risk Assessment
- Quantitative Risk Assessment
- Risk Response Planning
- Risk Control and Monitoring

Risk Identification

Risks Associated with GCS

Quantitative Risk Assessment Methods

Xiao et al., 2021; Pan et al., 2016

CO₂ Flow & Storage Capacity

Mineral Trapping

CO₂ Flow & Storage Capacity

• CO₂ Plume Forecast

Three-phase saturation map with different relative permeability settings

• CO₂ Injection Optimization

Max injection with optimized water alternating gas

Potential Storage Capacity Loss

Estimated porosity loss

CO₂ Storage Capacity Forecast

Ampomah et al., 2017; Jia et al., 2021; Moodie et al., 2019; Pan et al., 2016

Leakage Risks

Leakage Through Wells

(1) $CO_2(aq) + H_2O \rightleftharpoons HCO_3^- + H^+$ (2) $CSH(s) + H^+ \rightarrow Ca^{2+} + H_2O + SiO_2 \cdot H_2O$ (3) $Ca^{2+} + HCO_3^- + OH^- \rightleftharpoons CaCO_3(s) + H_2O$ (4) $Ca(OH)_2(s) \rightarrow Ca^{2+} + 2OH^-$ (5) $2Fe + 2HCO_3^- \rightarrow 2FeCO_3(s) + H_2(g)$

Legacy wells are considered with more risks.

Low pH

- Expected leakage is minimal (< 0.01% total injection).
- Worst-case scenarios (open holes) can lead to 0.4-1% leakage of the total injected CO₂.

Leakage Through Caprocks

- Long-term safety relies on caprock capacity and integrity.
- Leakage mechanisms include diffusion, capillary pressure breakthrough, and fractures (preexisting and induced).
- Caprocks may maintain their long-term integrity.

Estimated long-term porosity change

Underground Sources of Drinking Water

Estimate of likelihood of impacts

- Monitoring is important to detect any leakage and guide risk assessment.
- Risk assessment also guides and optimizes monitoring strategy.

Induced Seismicity

- With the goal of "net-zero" greenhouse gas emissions by 2050 in the U.S. and the 45Q tax credit for CCUS, CCUS will be heavily invested.
- Risk assessment is crucial for CCUS projects (both science and commercialization).
- Risks and uncertainties of CO₂ behavior in the reservoirs, leakage, impacts to the USDW and surface, and induced seismicity are studied quantitatively with advanced techniques by the CSR team.

ting.xiao@utah.edu| txiao@egi.utah.edu