

Water-Rock Interactions at Utah FORGE

8/19/2023 Clay Jones PhD

The Utah FORGE EGS Reservoir Rock

- Mineral assemblages in both plutonic and the bulk of the metamorphic rocks are similar.
- Low porosity < 0.5 %
- Low permeability ~50 microdarcy's
- Open fractures in the reservoir to are not interconnected.
 - No loss or gain of fluids during drilling.
 - Static water levels in unstimulated wells.

Building the Utah FORGE Heat Exchanger

Stimulation & Flowback Summary

- Stage 1 open hole
- Stages 2&3 perforations
- Stages 1&2 slick water
- Stage 3 viscosified fluid
- Sampling points in pink
- Similar volumes of flowback in all three stages.
- Summary
 - 10,062 bbl injected,
 - 6,240 bbl (62%) recovered
 - 3,822 bbl (38%) left in the reservoir (21,471 ft³, 608 m³).

Flowback Water Geochemistry

- Drastic changes to water chemistry over short time scales (<30 hours).
- Fluid base = culinary grade, low salinity water.
- Early sampled returns did not interact with the formation = fluid baseline.
- Overall changes become more pronounced with time.
- Overall increase in TDS from 100s of ppm to 1,000s of ppm.
- The most pronounced increases are in Cl (51 to 4,643 mg/kg), Na (50 to 2,319 mg/kg), K (2 to 403 mg/kg), and Ca (24 to 253 mg/kg).
- ~5,000 kg of dissolved solids were mobilized during stage 1 flowback alone!

Flowback Water Geochemistry

- Mg declines with time from ~14 to ~2 mg/kg.
- Geothermal fluids are Mg-poor.
- Mg-bearing phases have been observed filling fractures within the reservoir.
- The decline in Mg with time is interpreted as the result of water-rock interaction in the EGS reservoir.

- Open-space filling mineralization in a fracture zone at ~8,010 ft in 16A(78)-32.
- Fe-bearing dolomite rhombs in a matrix of fine-grained quartz

16A(78)-32 Fracture Zone 8,000 – 8,010 ft

50µm

50µm

Fe Kα1

50µm

50μm

50μm

78B-32 Microbreccia 6,728.5 to 6,729.8 ft Cemented dominantly by interlayered chlorite/smectite

78B-32 Microbreccia 6,728.5 to 6,729.8 ft

Si Kα1

Al Kα1

1mm

Κ Κα1

Mg Ka1_2

1mm

1mm

1mm

Naphthalene Sulfonate Tracer Returns

- Stage 1&2 return concentrations are relatively consistent/stable after ~400 bbl of untagged fluid are recovered.
- Stage 3 declines with time.

Naphthalene Sulfonate Tracer Returns

- Tracer concentrations remain fairly stable as Cl increases drastically.
- Mixing with a saline formation water should result in a decrease in tracer concentration paired with an increase in Cl (not observed).

Naphthalene Sulfonate Tracer Returns

- Tracer concentrations remain fairly stable as Cl increases drastically.
- Mixing with a saline formation water should result in a decrease in tracer concentration paired with an increase in Cl (not observed).

Halite in Veins

Vein from 5,850 ft in the 16A(78)-32 core filled by chlorite (Chl), interlayered chlorite/smectite (C/S) and hematite (Hem). A late fracture bisects the vein and is filled by lighter colored interlayered illite/smectite (I/S).

Halite in Veins

SEM-EDS analyses of a broken vein surface.

25µm

25µm

5345

25µm

25µm

25µm

Halite in Veins

SEM-EDS analyses of a broken vein surface.

25µm

25µm

25µm

25µm

Simple Water-Rock Interaction Experiments

- Crushed core fragments w/o veins from three lithologies (A-C)
- Reacted with deionized water
- Water:Rock ratios of 1:1 and 2:1
- Thoroughly mixed
- Left for ~24 hrs at room temperature
- Decanted and centrifuged
- Water analyzed

Simple Water-Rock Interaction Experiments

Water Analyses Results:

- Smaller water:rock ratios = more leached solids
- Similar results for all three rock types (plutonic and metamorphic)
- Most abundant = $SO_4 > K$, Ca
- Low Na & Cl

Anhydrite

- Widespread accessory phase (< 1 wt%) in both plutonic and metamorphic lithologies.
- Filling pore spaces? (not connected to veins)
- Rare occurrences as an open-space/ vein filling phase.

AUX 25.0kV WD17.1mm High-P.C.50.0 30Pa

/1021

Flowback Chemistry

- SO₄ ~2 to 3 times more abundant in flowback from stage 3 (viscosified fluid).
- Cl concentrations lowest in flowback from stage 3.

Microseismic Data

 Microseismic data plotted as a function of time.

Data recorded and analyzed by our partners at:

Planes Fit to Microseismic Data

Images courtesy of Aleta Finnila PhD, WSP

Correlation of Flowback Chemistry with Stimulation Type

Stages 1&2:

- Slickwater.
- Diffuse seismicity.
- Reactivation of natural fractures?
- High Cl concentrations due to dissolution of halite in veins?

Stage 3:

- Viscosified fluid.
- Seismicity can be fit by fewer planes.
- Propagated hydraulic fracture?
- High SO₄ concentrations due to dissolution of anhydrite in the wall rocks?

Looking North

Thankyou! Questions?

Funding provided by the US Department of Energy Additional support provided by Utah School and Institutional Trust Lands Administration, Beaver County, the Governor's Office of Energy Development, and Smithfield Foods.

