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What are Critical Materials/Minerals?
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silicon, silicon carbide and terbium.
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sition to clean energy, critical minerals bring new challenges to
energy security”




Minerals used in Clean Energy Technologies
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Notes: kg = kilogramme; MW = megawatt. Steel and aluminium not included. See Chapter 1 and Annex for details on the assumptions and methodologies.



Expansion in Electric Vehicles and Wind Power Will
Drive Demand for Critical Materials/Minerals
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Critical Material/Mineral Needs by Clean Energy Technology
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Notes: Shading indicates the relative importance of minerals for a particular clean energy technology (® = high; ® = moderate; © = low), which are discussed in their

respective sections in this chapter. CSP = concentrating solar power; PGM = platinum group metals.
* In this report, aluminium demand is assessed for electricity networks only and is not included in the aggregate demand projections.



Critical materials/minerals production provide increase pressure on GHG emissions, but clean

energy technology still has advantages.
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Mineral Requirements for New Power Generation Increased by 50% since 2010
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Energy revenue is projected to change.
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Notes: Revenue for energy transition minerals includes only the volume consumed in clean energy technologies, not total demand. Future prices for coal are
projected equilibrium prices in WEO 2020 SDS. Prices for energy transition minerals are based on conservative assumptions about future price trends (moderate
growth of around 10-20% from today's levels).



Energy revenue is projected to change.
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Supply chain for clean technologies drastically different than oil and gas

Indicative supply chains of oil and gas and selected clean energy technologies
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USA role is currently not upstream at a significant level, mostly focused on parts

and deployment.
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Supply Chain Domestic Critical Materials
Challenges Deposits

EXPLANATION
Critical Minerals
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Supply Chain Domestic Critical Materials
Challenges Deposits

EXPLANATION
Critical Minerals

* Antimony 4 Manganese

* Barite 4 Niobium and Tantalum

e Beryllium  + Platinum Group Elements
e Cobalt 4 Rare Earth Elements
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* Germanium = Tin
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Figure 1. Critical mineral resources in
Australia, Canada, and the United States
(Labay and others, 2017). Critical minerals
support a broad range of industrial
sectors and a diversity of high-tech
industries important to global economies
(see Primary Uses of Critical Minerals
sidebar).




Potential Source of
Critical Materials and
Rare Earths in Utah (Utah

Geological Survey)

Many of these sources are considered low grade
making them suitable for phytoextraction
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Potential Source of Critical Materials and Rare Earths in Nevada from Low Grade
Sources (Nevada Division of Materials)
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Many of these sources are considered low grade making them
suitable for phytoextraction



A Caldera in Nevada Now_I-I; the Most Lithium in the
World. Let the Gold Rush Begin.

But mining the area is controversial.
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Government Programmatic Activities in Critical Materials 2014-2021

FOA-2003 / FOA-1627
& Characterization

gl sl « Bench/Small-Pilot REE
Report to Characterization BOT ’,”]"'] "qL'j’. =
Congress | aboratory /Be bepu_ruhom >2%) of
Reauested 2 wi MREO RFP Large-Scale Pilots

« Salable High Purity REE
Separation
* Field Sampling &
M ineral Characterization
FOA 1718

» and validate separation

advancement of commercially

viable technologies

CORE-CM

FOA 2404

* Innovated processing

Transformational Technology Concepts, Novel Separations and Advanced Sensor Development (inc. RIC and other FWP)

2014 @ 2015 2016 @ 2017 ® 2018 @ 2019 2020 @

2021 6



Technical Hurdles

* “Ground Truth” data one resources not
widely available

* Need for environmentally friendly
recovery approches

* Low water
* Low energy
* New recycling approaches

This Photo by Unknown Author is licensed under CC BY-SA


https://www.dailypetition.com/China-Tigers-are-savagely-sacrificed-to-make-tiger-bone-wine-Sign-The-Petition-Now-1-t-25
https://creativecommons.org/licenses/by-sa/3.0/

Innovation and Research:
Critical Materials from Un-
conventional Resources

e Unconventional sources
concentrations 0.0000001
percent to 0.03

* Conventional is 0.5 percent
to 40 percent for
conventional ores.



https://www.dailypetition.com/China-Tigers-are-savagely-sacrificed-to-make-tiger-bone-wine-Sign-The-Petition-Now-1-t-25
https://creativecommons.org/licenses/by-sa/3.0/

Environmental and Social Challenges

Areas of risks Description

o With higher greenhouse gas emission intensities than bulk metals, production of energy transition minerals
can be a significant source of emissions as demand rises

e Changing patterns of demand and types of resource targeted for development pose upward pressure

Climate
change

¢ Mining brings major changes in land cover that can have adverse impacts on biodiversity

Land use e Changes in land use can result in the displacement of communities and the loss of habitats that are home
to endangered species

Environment ¢ Mining and mineral processing require large volumes of water for their operations and pose contamination
Water risks through acid mine drainage, wastewater discharge and the disposal of tailings
management e Water scarcity is a major barrier to the development of mineral resources: around half of global lithium and
copper production are concentrated in areas of high water stress

¢ Declining ore quality can lead to a major increase in mining waste (e.g. tailings, waste rocks); tailings dam
Waste failure can cause large-scale environmental disasters (e.g. Brumadinho dam collapse in Brazil)

¢ Mining and mineral processing generate hazardous waste (e.g. heavy metals, radioactive material)

¢ Mineral revenues in resource-rich countries have not always been used to support economic and industrial
Governance growth and are often diverted to finance armed conflict or for private gain

e Corruption and bribery pose major liability risks for companies
o Workers face poor working conditions and workplace hazards (e.g. accidents, exposure to toxic
Health and chemicals)

safety o Workers at artisanal and small-scale mine (ASM) sites often work in unstable underground mines without
access to safety equipment

Social

e Mineral exploitation may lead to adverse impacts on the local population such as child or forced labour
Human rights (e.g. children have been found to be present at about 30% of cobalt ASM sites in the DRC)

Changes in the community associated with mining may also have an unequal impact on women




Environmental and Social Challenges

Environment

Water
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Human rights

Mining and mineral processing require large volumes of water for their operations and pose contamination
risks through acid mine drainage, wastewater discharge and the disposal of tailings

Water scarcity is a major barrier to the development of mineral resources: around half of global lithium and
copper production are concentrated in areas of high water stress

Declining ore quality can lead to a major increase in mining waste (e.g. tailings, waste rocks); tailings dam
failure can cause large-scale environmental disasters (e.g. Brumadinho dam collapse in Brazil)

Mining and mineral processing generate hazardous waste (e.g. heavy metals, radioactive material)

Workers face poor working conditions and workplace hazards (e.g. accidents, exposure to toxic
chemicals)

Workers at artisanal and small-scale mine (ASM) sites often work in unstable underground mines without
access to safety equipment

Mineral exploitation may lead to adverse impacts on the local population such as child or forced labour
(e.g. children have been found to be present at about 30% of cobalt ASM sites in the DRC)
Changes in the community associated with mining may also have an unequal impact on women
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